Banks, depositors and liquidity shocks: long term vs short term interest rates in a model of adverse selection

Geethanjali Selvaretnam*

Abstract

This model takes into consideration the fact that depositors have private information about their probability of having to withdraw early. The banks can offer a menu of contracts with different combinations of long and short term interest rates to those who withdraw early and wait respectively. This is a principal-agent model of a bank in a competitive market and depositors where depositors are either low or high type which indicates the probability of early withdrawal. Therefore they will consider the long-term and short-term returns in their investment decision. We find the contracts that the banks offer that can be sustained as equilibrium - symmetric pooling equilibrium where only one contract is offered and a separating equilibrium where two contracts are offered. It is found that found return of more than one can never be sustained. Further, there is no symmetric pooling equilibrium when both types withdraw with some probability. However a symmetric pooling equilibrium can be sustained if the proportion of low type agents is high enough and they never withdraw early. There is a separating equilibrium if the proportion of low type agents is sufficiently high.

JEL Classifications: D82, G21

Key Words: adverse selection, interest rates, liquidity shock, private information

*For Correspondence: School of Economics and Finance, University of St Andrews, KY16 9AL; E-mail address: gs51@st-andrews.ac.uk Tel.: +44-(0)1334-461956; Fax: +44-(0)1334-4624444.
1 Introduction

We find that the commercial banks are forever changing the interest rates they offer for term deposits in order to attract customers and increase profitability. This paper looks at interest rate contracts that can be sustained as an equilibrium in the competitive banking industry. Goldstein and Pauzner (2005) looks at a model where all the depositors could be hit by a liquidity shock with the same probability, and this is public knowledge. Further, the model allowed the agents to withdraw because of self-fulfilling beliefs and therefore, used a global game framework. The model in this paper does not have withdrawals due to speculation and self fulfilling belief. If the depositors are confident of the financial stability of the country and that the banks having access to funds to meet any amount of early demand, they would not withdraw because of self-fulfilling beliefs, which is the usual scenario in many of the economies.

In this model, depositors withdraw early only if they are hit by a liquidity shock. We also take into account that depositors have different probabilities of having to withdraw early. The crucial point in this paper is that when making deposits in banks the agents have private information about the probability of being hit by the liquidity shock. This is because early withdrawal becomes necessary because of personal circumstances - their own savings habits; illness of a relative that might incur medical costs; plans to move to a new house; wedding or travel plans etc.

It is possible for the banks to give different returns to those keeping their money with the bank for different lengths of time. We find such contracts common in practice. Banks offer different products such as current accounts with no interests, saving accounts with different interest rates depending on the amount and time length of the deposit. In this model the banks design contracts which specify the early return and the late return which would be given to those withdrawing early and late respectively.

When making a decision about depositing in a bank, the depositors will consider the short term and long term interest rates that are offered by the bank and also their own probability of being early withdrawers. Because the banks operate in
competitive environments they will have to offer a good deal and each depositor will choose the contract that gives him the highest expected utility.

In this model we attempt to find contracts that can be sustained as equilibrium if the depositors are of only two types - whose probability of early withdrawal is either high or low. The depositors are risk averse and the banks are risk neutral. As in the standard literature of similar models, we find that sustaining equilibrium is not easy. This is because of the banks operating in a competitive environment; the risk averseness of agents; and the payoffs of both the principal and the agents being influenced by two variables. This explains the strange interest rates offered by banks from time to time which don’t last for long.

Standard literature on screening of two types in adverse selection, Wilson (1977) and Rothschild and Stiglitz (1976), Mas-Colell, Whinston and Green (1995) show there is non-existence of pooling equilibrium but separating equilibrium can be sustained under certain conditions. Their models deal with adverse selection in the insurance market and labour market. In the labour market employees have private information about their types. The choice variables are wages and education. The wage affects the payoffs of both players. However the other variable, education, is only a screening device which affects the payoff of the employee and not the employer. In the insurance market, indemnity and premium are the choice variables, which affect the expected payoffs of both players, and all the agent types are affected by both the variables. This model is such that both the variables - i.e. returns offered to early and late withdrawers - affect the principal’s profit function as well as the agents’ utility function.

It is found that a separating equilibrium where the banks screen the two types so that they accept different contracts can be sustained as long as the proportion of low type agents is high enough. The proportion of agents who have low probability of early withdrawal should be sufficiently high to make it worthwhile for the bank to have the two contracts. Otherwise the bank would be better off having just one contract for both types of depositors.

It is also found that a symmetric pooling equilibrium where all the banks offer only one contract and both types accept the same contract can be sustained only if
the low type agents will never withdraw early and the proportion of such a type is sufficiently high.

A reason behind the non-existence of a symmetric pooling equilibrium when both types withdraw with some probability is because the agents are risk averse and the principal is risk neutral. When the low types have zero probability of withdrawal, only the long term return affects the agents’ utility and therefore we are able to sustain an equilibrium.

Another interesting finding for the banking industry is about the level of insurance given to early withdrawers. Even with no withdrawals due to self-fulfilling beliefs, the early withdrawers are never given an early return of more than one in equilibrium. This is interesting because when we had depositors withdrawing due to self-fulfilling beliefs we had to penalise the early withdrawing. However, in this model, people are withdrawing only because they have a genuine need. But it is found here that equilibrium cannot be sustained if we give early withdrawers an interest.

The depositors do get early return of one in certain cases. When we have a symmetric pooling equilibrium, the depositors are offered early return of one, provided the low types will never withdraw early. For a separating equilibrium, the agents who have a high probability of being hit by the liquidity shock get early return of one. When the high type agent will definitely withdraw early or the low type agent will never withdraw early. Other than in these cases, the early withdrawing should be given a return that is less than what he actually invested, if equilibrium is to be sustained!

The rest of the paper is as follows: In the next section the model is set out. This is followed by the analysis of a pooling equilibrium where all the banks offer just one contract in section 3. The analysis of a separating equilibrium where the banks offer different contracts for the different types of agents is found in section 4 while section 5 concludes.
2 The Model

There are three periods \((t_0, t_1, t_2)\). A continuum \([0, 1]\) of agents are endowed with one unit at the beginning of \(t_0\) which they can deposit in a bank. There are \(n\) number of risk neutral banks which operate in a competitive market. Consumption happens only in periods \(t_1\) and \(t_2\). In this simple set up, the continuum of agents \([0, 1]\) are only of two types \(L\) and \(H\) who have probability \(\lambda_L\) and \(\lambda_H\) of being hit by a liquidity shock in \(t_1\) respectively where \(\lambda_L < \lambda_H\).

Once a player receives a liquidity shock he has to withdraw early in \(t_1\) and can derive utility only by consuming in \(t_1\). If the agent does not receive a liquidity shock, he waits till the last period and receives a higher return. In this model there is no withdrawal due to self fulfilling beliefs. It is assumed that the bank has access to funds so that it can always meet the demand of early withdrawers and that it is public knowledge.

Each agent have private information as to whether he is type \(L\) or \(H\) at the beginning of \(t_0\). However it is public knowledge that the proportion of type \(L\) and \(H\) is \(p\) and \((1 - p)\) respectively.

The banks are risk neutral. All agents are risk averse with the same utility function which is strictly concave, increasing and twice continuously differentiable and has a relative risk aversion coefficient of \(-\frac{cu''(c)}{u'(c)} > 1\). Their utility functions are given by \(u(c) = c^\alpha\) where \(0 < \alpha < 1\).

At the beginning of \(t_0\) each bank \(j\) designs and offer contracts which has the pair of returns \((r_d^j, R_d^j)\) where \(d \in (L, H)\). Agents who deposited in bank \(j\) and accepted contract \(d\) receive \(r_d^j\) and \(R_d^j\) if they withdraw in \(t_1\) and \(t_2\) respectively. We assume that the banks want to survive for many periods and therefore will make viable investment decisions. They will fix the depositor returns such that \(R_d^j > r_d^j\) so that the patient agents will not want to withdraw early.

In \(t_0\), after observing the contracts offered by the banks \((r_d^j, R_d^j)\) and knowing their own probability of being hit by a liquidity shock (i.e. whether they are type \(L\) or \(H\)), each agent \(i\) will decide to take the contract that gives him the highest expected utility provided it is higher than not investing. The bank invests the deposits in
a long term project keeping just enough as reserves to meet the early withdrawals. The return on the long term project is realized in t_2. Each unit that is invested in the long term project in t_0 realizes a fixed amount $\theta (> 1)$ in t_2.

We can outline the model as follows:

Period t_0:

Stage 1: Agents privately learn their types (type L or H) - i.e. the probability of being hit by the liquidity shock, λ_L or λ_H. Banks simultaneously announce sets of contracts $(r_{d,j}^i, R_{d,j}^i)$ that are offered.

Stage 2: Given the contracts that are offered, and knowing their own types the agents choose whether to accept a contract, and if so, which one. Banks invest money in a long term project after keeping just enough to meet the early withdrawals in t_1.

Period t_1: Liquidity shock hits proportion p agents with probability λ_L and $(1 - p)$ proportion of agents with probability λ_H. Those who are hit by it withdraw and receive early return r_{d}^i.

Period t_2: Banks receive returns θ per unit from their investment. Agents who did not withdraw in t_1 receive a return $R_{d,j}^i$.

The objective of this model is to find contracts (r_{d}^j, R_{d}^j) that can be sustained as equilibrium. A contract is an equilibrium if, once all the banks have offered their contracts, one bank can deviate and offer another contract which makes it better off. We check for the existence of a symmetric pooling equilibrium where all the banks offer just the one contract, and a separating equilibrium where they offer two contracts $\{(r_{L}^j, R_{L}^j), (r_{H}^j, R_{H}^j)\}$ to be taken by the two types of agents.

3 Symmetric Pooling Equilibrium

This section looks at what happens if all the banks can offer only one contract (r^j, R^j) to the depositors. Can such a contract where all the banks offer just the one and the same contract be sustained as an equilibrium where both types will deposit?

First of all, the depositors should find it worthwhile to accept the contract. The participation constraints for the low types and the high types are given by PC_L and PC_H respectively:
\[\lambda_L u(r) + (1 - \lambda_L) u(R) \geq u(1). \quad (PC_L) \]
\[\lambda_H u(r) + (1 - \lambda_H) u(R) \geq u(1). \quad (PC_H) \]

Because \(\lambda_L < \lambda_H \) and \(u(r) < u(R) \), \(PC_H \) is steeper than \(PC_L \).

The indifference curves for the low type and the high type can be given as follows:

\[\lambda_L u(r) + (1 - \lambda_L) u(R) = k_L. \quad (IC_L) \]
\[\lambda_H u(r) + (1 - \lambda_H) u(R) = k_H. \quad (IC_H) \]

When \(k_L = k_H = 1 \), these become the participation constraints. As has been illustrated in figure 1, the indifference curve of the type \(H \), \(IC_H \) is steeper than that of the type \(L \), \(IC_L \), for any given level of utility.

Because we assume symmetric pooling equilibrium, all banks offer the same contract, if the depositors decide to deposit, they will choose one bank with probability \(\frac{1}{n} \).

If only the type \(L \) will deposit, the proportion of deposits would be \(p \) and the profit to the banks will be \(\pi_L \). The banks will keep \(\lambda_L r \) as reserves, which is paid out in \(t_1 \). It invests the balance in a long term project which earns \(\theta \) per unit. In the last period, \(R \) is paid out to those who withdraw late.

\[\pi_L = \frac{p \{(1 - \lambda_L r)\theta - (1 - \lambda_L)R\}}{n}. \] \quad (1)

Likewise, if only the type \(H \) will deposit the proportion of deposits would be \((1 - p) \) and the profit to the banks will be \(\pi_H \),

\[\pi_H = \frac{(1 - p) \{(1 - \lambda_H r)\theta - (1 - \lambda_H)R\}}{n}. \] \quad (2)

If both types decide to deposit, they will choose one bank with probability \(\frac{1}{n} \),
Figure 1: The indifference curves with single crossing.
and the profit π to one bank is given by,

\[\pi = \frac{p \{(1 - \lambda_L r)\theta - (1 - \lambda_L)R\} + (1 - p) \{(1 - \lambda_H r)\theta - (1 - \lambda_H)R\}}{n}. \quad (3) \]

If both the participation constraints do not hold, then the profit will be zero because there will be no deposits.

Lemma 1: Any contract \((r, R)\) is not a symmetric pooling equilibrium if the payoff \(π \neq 0\).

Proof. If \(π > 0\) the banks will have incentive to increase either of the returns slightly and attract all the depositors from the other banks to increase their profits. If \(π < 0\), the banks will reduce the deposit rates so that there will be no deposits and the bank makes zero profits. Therefore \((r, R)\) such that \(π > 0\) or \(π < 0\) cannot be an equilibrium. \(\blacksquare\)

Lemma 2: Any contract \((r, R)\) which gives \(π = 0\) other than \((1, \theta)\) is not an equilibrium.

Proof. All the combinations of \((r, R)\) where the banks break-even are shown in figure 2.

The break-even line when both types would deposit is given by line \(BE_A\).

\[p \{(1 - \lambda_L r)\theta - (1 - \lambda_L)R\} + (1 - p) \{(1 - \lambda_H r)\theta - (1 - \lambda_H)R\} = 0. \quad (BE_A) \]

If only one type prefers to deposit in equilibrium and the banks have to make zero profits, the combinations of \((r, R)\) will give different break-even lines. These lines are called the low-type break-even line, \(BE_L\) and the high-type break-even line, \(BE_H\) given by the following:

\[(1 - \lambda_L r)\theta - (1 - \lambda_L)R = 0. \quad (BE_L) \]

\[(1 - \lambda_H r)\theta - (1 - \lambda_H)R = 0. \quad (BE_H) \]

\[R = \frac{\theta}{1 - \lambda_L} - \frac{\lambda_L \theta}{1 - \lambda_L} r. \quad (BE_L) \]
Figure 2: The break-even lines
Line BE_H is steeper than line BE_L while line BE_A is between BE_H and BE_L. However all three lines go through $(1, \theta)$.

At O, both types of agents will participate because $(1, \theta) > (1, 1)$.

Any point on the break even line BE_A which is not $(1, \theta)$ means that some depositors are creating profits and others are creating losses for the bank. Therefore it would be better for the bank to move to a point where the loss creators are worse off and therefore not take the contract.

Consider the different situations that can occur as shown in the following diagrams. Recall that at any point IC_H is steeper than IC_L.

Consider a contract X which is on the left of O on line BE_A (where you are below line BE_H and above line BE_L) in figure 3. Because all the banks are offering this same contract, both types would be depositing. One bank can move to a point that is higher than IC_H and lower than IC_L (any point in the shaded area) so that the high types who will create profits are attracted and the low types who are creating losses are better off leaving to other banks. After the deviation, because only the type Hs are attracted to this bank and the contract is below line BE_H, the bank can make positive payoff.

Now consider a contract Y which is on the right of O on line BE_A (where you are above line BE_H and below line BE_L) in figure 4. One bank can move to a point that is higher than IC_L and lower than IC_H so that the low types who will create profits are attracted to you and the high types who are creating losses are better off leaving to other banks. Now because only the type Ls deposit, and the contract is below line BE_L, the bank can make a positive profit.

Therefore any point other than $(1, \theta)$ where $\pi = 0$ is not an equilibrium.

\textbf{Proposition 1} There does not exist a symmetric pooling equilibrium as long as $\lambda_L > 0$.

\begin{equation}
R = \frac{\theta}{1 - \lambda_H} - \frac{\lambda_H \theta}{1 - \lambda_H} r \\
\text{(BE}_H\text{)}
\end{equation}
Figure 3: X is not an equilibrium
Figure 4: Y is not an equilibrium.
Proof. It has been shown in the above lemmata that a contract cannot be an equilibrium if $\pi \neq 0$ and also when it is not $(1, \theta)$. If at all an equilibrium exists, it has to be at the point $(1, \theta)$ through which all three break-even lines pass and the bank makes zero profit. Recall the break-even lines BE_L and BE_H,

$$(1 - \lambda_d r_d)\theta - (1 - \lambda_d)R_d = 0, \tag{4}$$

where $d \in [L, H]$.

So the slope of the break-even line is fixed at

$$-\frac{\lambda_d \theta}{(1 - \lambda_d)}.$$

Recall the indifference curves given by IC_d;

$$\lambda_d u(r_d) + (1 - \lambda_d) u(R_d) = d. \tag{5}$$

The slope is given by,

$$\frac{dR_d}{dr_d} = -\frac{\lambda_d u'(r_d)}{(1 - \lambda_d) u'(R_d)}. \tag{6}$$

Now recall that the utility functions are of a specific form $u(c) = c^\alpha$ where $0 < \alpha < 1$.

Therefore the slopes of IC_L, IC_H, break-even lines BE_L and BE_H at the point $(1, \theta)$ are $\frac{\lambda_L}{1 - \lambda_L} \theta^{1-\alpha}$, $\frac{\lambda_H}{1 - \lambda_H} \theta^{1-\alpha}$, $\frac{\lambda_L}{1 - \lambda_H} \theta$, $\frac{\lambda_H}{1 - \lambda_L} \theta$ respectively.

We know that $\theta > \theta^{1-\alpha}$.

Therefore $\frac{\lambda_L}{1 - \lambda_L} \theta > \frac{\lambda_L}{1 - \lambda_L} \theta^{1-\alpha}$; $\frac{\lambda_H}{1 - \lambda_L} \theta > \frac{\lambda_H}{1 - \lambda_H} \theta^{1-\alpha}$; $\frac{\lambda_H}{1 - \lambda_L} \theta > \frac{\lambda_H}{1 - \lambda_H} \theta^{1-\alpha}$.

From this we can see that at $(1, \theta)$, break-even line BE_L is steeper than the indifference curve IC_L; break-even line BE_H is steeper than the indifference curve IC_H.

We already know that IC_H is steeper than IC_L and BE_H is steeper than BE_L.

In figure 5, note that to the left of O (where $r < 1$), IC_L is below line BE_L; while IC_H is above IC_L; line BE_H is above all the curves.

Therefore we can find a point to the left of O, above IC_L and below IC_H and
Figure 5: \(O \) is not an equilibrium.
line BE_L (any point in the shaded area).

So this would mean the high types will leave for the other banks while the low types will be attracted to the deviant bank.

This will give positive profits to the deviant bank.

Therefore point O cannot be sustained as an equilibrium so long as $\lambda_L > 0$. (note that only because $\lambda_L > 0$, we have IC_L is below line BE_L.) ■

The driving force behind Proposition 1 which ruled out the existence of a symmetric pooling equilibrium is that the line BE_L was steeper than IC_L which is because the agents are risk averse while the banks are risk neutral. This makes it possible for a bank to deviate profitably.

If the probability of early withdrawal is zero, $(\lambda_L = 0)$, only late return R will affect the break-even line and the indifference curves, so that both are horizontal. The next proposition says that a pooling equilibrium can be sustained at $(1, \theta)$ if $\lambda_L = 0$ as long as there is sufficient proportion of the low type agents.

Proposition 2 *A symmetric pooling equilibrium, $(1, \theta)$, can be sustained if $\lambda_L = 0$ and the proportion of type L is sufficiently high.*

Proof. When $\lambda_L = 0$, the indifference curve IC_L and break-even line BE_L are horizontal where early return r does not affect them. Now break-even line BE_L is given by a horizontal line $R = \theta$. Agents’ indifference curves, IC_L are also horizontal lines given by $u(R) = k_L$.

If the proportion of low type agents, p, is too low so that line BE_A is steeper than IC_H at O, then the bank can find a point above both IC_L and IC_H, but below line BE_H. Therefore a bank can deviate and offer a contract that is any point in the shaded area in figure 6 to attract both types of agents and make a profit.

However, if p is sufficiently high so that line BE_A is flatter than IC_H at O (figure 7), the bank cannot profitable deviate either to the left or right of O. Therefore if the proportion of low types are high enough so that line BE_A is sufficiently flat, a symmetric pooling equilibrium can be sustained at $(1, \theta)$ where all the banks can offer just one contract and they offer $r = 1; R = \theta$ ■
Figure 6: No symmetric pooling equilibrium.
Figure 7: Existence of symmetric pooling equilibrium.
4 Separating Equilibrium

Keeping in mind that the banks cannot observe the types, can two different contracts \{ (r_L, R_L) , (r_H, R_H) \} be designed so that the low types and the high types would take the different contracts? First of all, the banks have to offer sufficient returns for the agents to decide that it is worthwhile depositing rather than not depositing in the bank. In addition to that, they have to offer enough for one type of agent to prefer one contract over the other. Accordingly, the participation constraints, \(PC_d \), and the individual rationality constraints, \(IR_d \), are derived below:

The type \(L \) agent will accept the contract \((r_L, R_L)\) if and only if

\[
\lambda_L u(r_L) + (1 - \lambda_L) u(R_L) \geq 1, \quad (PC_L)
\]

and

\[
\lambda_L u(r_L) + (1 - \lambda_L) u(R_L) \geq \lambda_L u(r_H) + (1 - \lambda_L) u(R_H). \quad (IR_L)
\]

Type \(H \) agent will accept the \((r_H, R_H)\) contract if and only if,

\[
\lambda_H u(r_H) + (1 - \lambda_H) u(R_H) \geq 1, \quad (PC_H)
\]

and

\[
\lambda_H u(r_H) + (1 - \lambda_H) u(R_H) \geq \lambda_H u(r_L) + (1 - \lambda_H) u(R_L). \quad (IR_H)
\]

For the participation and individual rationality constraints to hold, because \(\lambda_L < \lambda_H \), we can deduce that \(r_L \leq r_H \leq R_H \leq R_L \).

As explained earlier the indifference curve \(IC_H \) is steeper than \(IC_L \) for any given \((r, R)\). Therefore at any point that they cross each other, \(IC_L \) will be below \(IC_H \) to the left of that point, and \(IC_L \) will be above \(IC_H \) to the right of that point. (figure 1)

Also recall that if only one group invests, the profit being zero from that group is line \(BE_L \) for the low types and line \(BE_H \) for the high types, with line \(BE_H \) being steeper than line \(BE_L \) and both going through \((1, \theta)\). (figure 2).

\[\text{For those not hit by the liquidity shock to wait till } t_2, \text{ it should be that } r_L \leq R_L \text{ and } r_H \leq R_H.\]

\[\text{If } r_L \geq r_H \text{ the high types will prefer the low type contract.}\]
If all the banks offer two contracts \((r_L, R_L), (r_H, R_H) \) which are taken by the low types and the high types respectively can it be sustained as an equilibrium?

Lemma 3: The points \((r_d, R_d) \) where the break-even line is tangent to the utility function are given by:

\[
\left(\frac{1}{\lambda_L + (1 - \lambda_L) \theta \frac{1}{\alpha}}, \frac{\theta \frac{1}{\alpha}}{\lambda_L + (1 - \lambda_L) \theta \frac{1}{\alpha}} \right) \text{ for the type } L \text{ agent, and }
\left(\frac{1}{\lambda_H + (1 - \lambda_H) \theta \frac{1}{\alpha}}, \frac{\theta \frac{1}{\alpha}}{\lambda_H + (1 - \lambda_H) \theta \frac{1}{\alpha}} \right) \text{ for the type } H \text{ agent.}
\]

Proof. It has already been shown in the proof of proposition 1 that the slope of the break-even lines \(BE_L \) and \(BE_H \) is

\[-\frac{\lambda_d \theta}{(1 - \lambda_d)},\]

and the slope of the indifference curves is;

\[-\frac{\lambda_d u'(r_d)}{(1 - \lambda_d) u'(R_d)},\]

where \(d \in [L, H] \).

At the point of tangency,

\[-\frac{\lambda_d \theta}{(1 - \lambda_d)} = -\frac{\lambda_d u'(r_d)}{(1 - \lambda_d) u'(R_d)}.
\]

This gives,

\[R_d = \frac{1}{\sqrt{\theta} \ast r_d}.
\]

Substituting this in the break-even line we get the tangency points:

\[r_d = \frac{1}{\lambda_d + (1 - \lambda_d) \theta \frac{1}{\alpha}}.
\]

\[R_d = \frac{\theta \frac{1}{\alpha}}{\lambda_d + (1 - \lambda_d) \theta \frac{1}{\alpha}}.
\]
Therefore the tangency points are
\[
\left(\frac{1}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}}, \frac{\theta^{1-\alpha}}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} \right);
\]
\[
\left(\frac{1}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}}, \frac{\theta^{1-\alpha}}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}} \right)
\]

Lemma 4: Both the tangency points would be to the left of O.

Proof. Since \(\theta > 1 \), \(\lambda_d + (1 - \lambda_d) \theta^{1-\alpha} > 1 \) where \(d \in \{L, H\} \).

Therefore \(\frac{1}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} < 1 \), \(\frac{\theta^{1-\alpha}}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} > \theta \).

Therefore the slopes of the indifference curves and break even lines are such that the tangency points will be to the left of O where \(r_L, r_H, < 1 \) and \(R_L, R_H > \theta \). ■

Diagram 8 and lemma 5 below show that the tangency points cannot be sustained as a separating equilibrium. This is because the low type agents will be better off pretending to be high types.

Lemma 5: The tangency points are such that compared to type \(L \), type \(H \) has higher early return as well as higher late returns.

Proof. Recall the tangency points:
\[
\left(\frac{1}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}}, \frac{\theta^{1-\alpha}}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} \right) \text{ for type } L;
\]
\[
\left(\frac{1}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}}, \frac{\theta^{1-\alpha}}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}} \right) \text{ for type } H.
\]

Even though \(\lambda_H > \lambda_L \) and \((1 - \lambda_L) > (1 - \lambda_H) \) we know that \(\theta^{1-\alpha} > 1 \). Therefore \(\lambda_L + (1 - \lambda_L) \theta^{1-\alpha} > \lambda_H + (1 - \lambda_H) \theta^{1-\alpha} \).

Therefore \(\frac{1}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}} > \frac{1}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} \); \(\frac{\theta^{1-\alpha}}{\lambda_H + (1 - \lambda_H) \theta^{1-\alpha}} > \frac{\theta^{1-\alpha}}{\lambda_L + (1 - \lambda_L) \theta^{1-\alpha}} \). ■

The tangency points therefore, cannot constitute a separating equilibrium. However in the next proposition, we prove the existence of a separating equilibrium as long as we have sufficient proportion of low types.

Proposition 3 If banks offer two different contracts, there exists an equilibrium
Figure 8: Tangency points.
\[(r^*_L, R^*_L), (r^*_H, R^*_H)\], where the two types accept different contracts so long as there is a sufficient proportion of low type agents.

Proof. First of all, the contracts should be such that from each type the bank makes zero profit. Otherwise any bank can offer a slightly better deal and attract all the customers. So, \((r^*_L, R^*_L)\) and \((r^*_H, R^*_H)\) should be on the break-even lines \(BE_L\) and \(BE_H\) respectively.

For the individual rationality constraints to hold, the indifference curves should be such that,

\[IC_L(r_H, R_H) \leq IC_L(r_L, R_L)\] \(\text{and}\) \[IC_H(r_L, R_L) \leq IC_H(r_H, R_H)\].

This means not only should we have \(r_L \leq r_H \leq R_L \leq R_H\), but also,

\[
\frac{1 - \lambda_H}{\lambda_H} \leq \frac{u(r_H) - u(r_L)}{u(R_L) - u(R_H)} \leq \frac{1 - \lambda_L}{\lambda_L}.
\]

So, for the individual rationality constraints to be satisfied, the contract points \{(r^*_L, R^*_L), (r^*_H, R^*_H)\} should be sufficiently far apart, but not too much.

The existence of a separating equilibrium is illustrated in figure 9.

We know that the tangency points are such that the type \(L\)'s both returns are lower. Therefore we fix one of the contracts \((r^*_L, R^*_L)\) as the low type's tangency point, \(M\). The other contract \((r^*_H, R^*_H)\) is the point \(N\) where the \(IC_L\) which is tangent to \(BE_L\) cuts the \(BE_H\) line.

Then there is no incentive for a bank to deviate as long as \(BE_A\) is always below the \(IC_H\) that goes through \(N\). Now, if you move to a point that makes the high types better off, the low types will also be attracted. Since any such point is above \(BE_A\), it giving a loss to the bank. This would be so if the low type agents are high enough so that \(BE_A\) is sufficiently flat.

The figure 10 below shows that when the low types are not sufficiently high, \(BE_A\) is steeper so that a bank can deviate to make profit. If it offers a contract in the

\[
\begin{align*}
3\lambda_L u(r_L) + (1 - \lambda_L) u(R_L) & \geq \lambda_L u(r_H) + (1 - \lambda_L) u(R_H) \\
\lambda_H u(r_H) + (1 - \lambda_H) u(R_H) & \geq \lambda_H u(r_L) + (1 - \lambda_H) u(R_L)
\end{align*}
\]
Figure 9: Existence of a separating equilibrium.
shaded area above IC_H, but below BE_A, both types will take that contract, making the deviant bank better off.

Therefore we can sustain a separating equilibrium if we have a sufficient proportion of the low types. ■

This finding is in line with that in the standard literature on screening two types of agents where separating equilibrium can be sustained under certain conditions. Wilson (1977), Rothschild and Stiglitz (1976), Mas-Colell, Whinston and Green (1995). It is crucial in our model of bank returns that both the variables r and R affect the
payoff functions of the agents and principal (the depositors and the banks). In the labour market models one of the variables (education) is just a screening devise that affects only the agents’ indifference curves. We are also able to discuss what happens when only one variable affects the payoff functions.

We go further in this model to find something interesting for the banking industry. Because depositors face the possibility of being hit by liquidity shocks, the bank gives them insurance in the form of early returns. Sharing of risk mean that the early withdrawers get some interest which is shared by those who were not hit by the liquidity shock. It is worth noting that the equilibrium contracts never give early returns more than one - i.e. no interest for early withdrawers.

We already know from proposition 2, for a symmetric pooling equilibrium to be sustained, early return of \(r = 1 \) is given, provided the low types will never withdraw early. In a separating equilibrium, the low types will always receive less than what he invested (i.e. \(r_L < 1 \)). However, early return of one, is given to the high types \((r_H = 1) \) provided they will definitely withdraw early or when the low types will never withdraw early.

Higher the probability of being early withdrawers, higher the early return. Also when the low type’s probability of early withdrawal is lower, it is easier to give a higher early return to the high type without having to worry about the low type preferring the high type’s contract.

These are summarised in the next two propositions.

Proposition 4 Early return of \(r^*_H = 1 \) is given to the high types, only when they are sure to withdraw early \((\lambda_H = 1) \) or when the low types will never withdraw early \((\lambda_L = 0) \).

Proof. This is shown diagrammatically.

If \(\lambda_H = 1 \) where the high type agents will withdraw early for sure, we have only the early return \(r \) affecting the high type functions. The line \(BE_H \) and the \(IC_H \) would then be vertical. This is illustrated in figure 11. Then we can have \((r^*_L, R^*_L) \) where the \(IC_L \) is tangent to line \(BE_L \) at point \(M' \). The high types should be offered contract \((r^*_H, R^*_H) \) given by any point on line \(BE_H \) that is below \(N' \) where the tangent
Figure 11: Existence of separating equilibrium when \(\lambda_H = 1 \).

\(IC_L \) intersects the vertical \(BE_H \) (any point on the dark line). Then the bank cannot profitably deviate. Therefore we can sustain a separating equilibrium if \(\lambda_H = 1 \) with \(r_H^* = 1 \).

In figure 12 we show the existence of a separating equilibrium with \(r_H^* = 1 \) for the high types when the low types will definitely not withdraw early (\(\lambda_L = 0 \)). This means that the \(IC_L \) and \(BE_L \) will be horizontal. So we can sustain an equilibrium where \((r_H^*, R_H^*)\) is at point \(O \), \((1, \theta)\) and \((r_L^*, R_L^*)\) is at any point on the horizontal \(BE_L \) to the left of \(O \) - i.e. \(r_L^* < 1 \), \(R_L^* = \theta \).
Figure 12: Separating equilibrium when $\lambda_L = 0$.

\[\text{Diagram showing the separating equilibrium with } \lambda_L = 0. \]
In this case, giving a higher early return is not going to lure the low type of agents to the high type contract. This makes it possible for the banks to offer \(r^*_H = 1 \) to the high types.

5 Conclusion

This paper looked at a principal-agent model where we have two types of agents. The types are distinguished by whether the agents, who are the depositors of banks, have high or low probability of being hit by a liquidity shock and withdraw early. The agents have private information of their type and the banks which are in competition, design contracts with short term and long term interest rates which can be chosen by the agents.

The risk averseness of the agents, together with the competition in the market and having both the variables affecting the payoffs make it difficult to sustain equilibrium.

We have established the existence of separating equilibrium where the two types would take two different contracts offered by the bank, provided the proportion of the low type agents is large enough. A symmetric pooling equilibrium where all the banks offer just the one contract can be sustained as an equilibrium only when the low type agents have probability of zero of withdrawing early and that proportion is large enough.

Another interesting finding is that even with no withdrawals due to self-fulfilling beliefs, the early withdrawers are never given an early return of more than one in equilibrium. In fact, the depositors get early return of \(r = 1 \) when we have a symmetric pooling equilibrium and in limited cases for a separating equilibrium: the high types get \(r_H = 1 \) only when the low types will never withdraw early \((\lambda_L = 0) \) or when the high types will definitely withdraw early \((\lambda_H = 1) \).
References